day17, example

This commit is contained in:
efim 2023-12-17 10:43:12 +00:00
parent 08c20ea6e0
commit 41e32d405b
1 changed files with 114 additions and 70 deletions

View File

@ -5,24 +5,42 @@ import (
"log"
"math"
"os"
"slices"
"strings"
// "time"
)
const ExampleResult string = ">>v>>>^>>>vv>>vv>vvv>vvv<vv>"
func Run() int {
fmt.Println("hello from day 17")
filename := "day17/example"
field := NewField(filename)
fmt.Printf("%+v\n", field)
field.RunDijkstra()
startSegment := PathSegmentEnd{
endsAt: Coord{0, 0},
totalLength: 0,
lastSteps: make(map[Direction]int),
done: true,
lastDirection: Downward, // fake, caution
}
end := Coord{field.Height - 1, field.Width - 1}
lenToEnd := field.Paths[end].totalLength
field.runSearch(startSegment, end)
pathsFoundToEnd := field.Paths[end]
fmt.Println("check visually:")
// fmt.Println(field.Paths[end].stringPathSoFar)
fmt.Println(field.printLastDirection())
return lenToEnd
minimal := math.MaxInt
for _, path := range pathsFoundToEnd {
fmt.Printf("%+v ; len is %d\n", path, path.totalLength)
if path.totalLength < minimal {
minimal = path.totalLength
}
}
// fmt.Printf("i'm looking for %s\n", ExampleResult)
return minimal
}
// let's do dijkstra. it also needs a priority queue
@ -116,6 +134,7 @@ func (d Direction) GetPerpendicular() (directions []Direction) {
}
type PathSegmentEnd struct {
endsAt Coord
totalLength int
lastSteps map[Direction]int
lastDirection Direction
@ -123,6 +142,10 @@ type PathSegmentEnd struct {
done bool
}
func (p *PathSegmentEnd) IsExamplePathPrefix() bool {
return strings.HasPrefix(ExampleResult, p.stringPathSoFar)
}
func (p *PathSegmentEnd) NextDirections() (next []Direction) {
next = append(next, p.lastDirection.GetPerpendicular()...)
@ -132,12 +155,40 @@ func (p *PathSegmentEnd) NextDirections() (next []Direction) {
next = append(next, p.lastDirection)
}
log.Printf("getting directions from %+v they are %+v", p, next)
// if p.IsExamplePathPrefix() {
// log.Printf("getting directions from %+v they are %+v", p, next)
// }
// log.Printf("getting directions from %+v they are %+v", p, next)
return
}
func (p *PathSegmentEnd) isDominating(other PathSegmentEnd) bool {
if p.endsAt != other.endsAt {
panic(fmt.Sprintf("comparing domination of paths on different ells: %+v %+v",
p, other))
}
var thisDirection Direction
var thisSteps int
for thisDirection, thisSteps = range p.lastSteps {
break
}
var otherDirection Direction
var otherSteps int
for otherDirection, otherSteps = range other.lastSteps {
break
}
sameDirection := thisDirection == otherDirection
// if other has less steps, then current total length is not important
// other can still be more efficient in the future
lessOrSameLastSteps := thisSteps <= otherSteps
return sameDirection && lessOrSameLastSteps && p.totalLength < other.totalLength
}
type Field struct {
Paths map[Coord]*PathSegmentEnd
Paths map[Coord][]*PathSegmentEnd
Costs [][]int
Height, Width int
Start Coord
@ -146,13 +197,14 @@ type Field struct {
func NewField(filename string) Field {
enterCosts := ReadEnterCosts(filename)
startSegment := PathSegmentEnd{
endsAt: Coord{0, 0},
totalLength: 0,
lastSteps: make(map[Direction]int),
done: true,
lastDirection: Downward, // fake, need to init direct neighbors also
lastDirection: Downward, // fake, caution
}
initialPaths := make(map[Coord]*PathSegmentEnd)
initialPaths[Coord{0, 0}] = &startSegment
initialPaths := make(map[Coord][]*PathSegmentEnd)
initialPaths[Coord{0, 0}] = []*PathSegmentEnd{&startSegment}
return Field{
Paths: initialPaths,
@ -168,9 +220,8 @@ func (f *Field) isValid(c Coord) bool {
}
// presupposes that direction is valid
func (f *Field) continuePathInDirection(from Coord, d Direction) (result PathSegmentEnd) {
curPath := f.Paths[from]
nextCoord := from.applyDirection(d)
func (f *Field) continuePathInDirection(curPath PathSegmentEnd, d Direction, finish Coord) (result PathSegmentEnd) {
nextCoord := curPath.endsAt.applyDirection(d)
moveCost := f.Costs[nextCoord.Row][nextCoord.Col]
newCost := curPath.totalLength + moveCost
lastSteps := make(map[Direction]int)
@ -183,73 +234,66 @@ func (f *Field) continuePathInDirection(from Coord, d Direction) (result PathSeg
}
return PathSegmentEnd{
endsAt: nextCoord,
totalLength: newCost,
lastDirection: d,
lastSteps: lastSteps,
stringPathSoFar: curPath.stringPathSoFar + d.AsSymbol(),
done: nextCoord == finish,
}
}
func (f *Field) RunDijkstra() {
checking := make(map[Coord]any, 0)
func (f *Field) runSearch(curPath PathSegmentEnd, finish Coord) {
checking[f.Start] = struct{}{}
for len(checking) > 0 {
var currentCoord Coord
for key := range checking {
currentCoord = key
break
}
currentPath := f.Paths[currentCoord]
directions := currentPath.NextDirections()
for _, direction := range directions {
log.Printf("from %+v will examine in direction %s", currentCoord, direction)
neighborCoord := currentCoord.applyDirection(direction)
if !f.isValid(neighborCoord) {
continue // prevent going off the grid
}
neighborPathSoFar, found := f.Paths[neighborCoord]
if !found {
neighborPathSoFar = &PathSegmentEnd{
totalLength: math.MaxInt,
}
f.Paths[neighborCoord] = neighborPathSoFar
}
// log.Printf("about to check done on neighbor %+v\n", neighborPathSoFar)
if neighborPathSoFar.done {
continue // already found optimal
}
pathIfWeGoFromCurrent := f.continuePathInDirection(currentCoord, direction)
if pathIfWeGoFromCurrent.totalLength < neighborPathSoFar.totalLength {
f.Paths[neighborCoord] = &pathIfWeGoFromCurrent
}
checking[neighborCoord] = struct{}{}
}
f.Paths[currentCoord].done = true
delete(checking, currentCoord)
// fmt.Print(f.printLastDirection())
// time.Sleep(time.Second)
}
}
func (f *Field) printLastDirection() (result string) {
result += "\n"
for rowNum := 0; rowNum < f.Height; rowNum++ {
for colNum := 0; colNum < f.Width; colNum++ {
path, found := f.Paths[Coord{rowNum, colNum}]
if !found {
result += "."
} else {
result += path.lastDirection.AsSymbol()
}
}
result += "\n"
// if len(curPath.stringPathSoFar) > f.Height+f.Width {
// if curPath.IsExamplePathPrefix() {
// log.Printf(">> CUTOFF %+v\n", curPath)
// }
// return
// }
// if start is also finish : this path is done
// record the length, for the coord?
// get directions,
// if no directions : this path is done
// get neighbords,
// for each neighbor calc what whould be path if we went to the neighbor
// if neighbor already known path which DOMINATES current - do not continue
//
// in the end for each vertice there will be map[direction][]PathSegmentEnd
current := curPath.endsAt
if current == finish {
if curPath.IsExamplePathPrefix() {
log.Printf(">> reached end with %+v\n", curPath)
}
return
}
}
directions := curPath.NextDirections()
if len(directions) == 0 {
return
}
checkingNeighbors:
for _, d := range directions {
nextCoord := curPath.endsAt.applyDirection(d)
if !f.isValid(nextCoord) {
continue
}
ponentialPath := f.continuePathInDirection(curPath, d, finish)
knownPathsToNeighbor := f.Paths[ponentialPath.endsAt]
for _, knownPath := range knownPathsToNeighbor {
if knownPath.isDominating(ponentialPath) {
continue checkingNeighbors
}
// if our potential path is not dominated, then save as potential path
// and would be nice to remove all known paths which are dominated by this potential
}
filteredKnownPaths := slices.DeleteFunc(knownPathsToNeighbor, func(previous *PathSegmentEnd) bool {
return ponentialPath.isDominating(*previous)
})
filteredKnownPaths = append(filteredKnownPaths, &ponentialPath)
f.Paths[ponentialPath.endsAt] = filteredKnownPaths
f.runSearch(ponentialPath, finish)
}
}