day21, part2, did not like

This commit is contained in:
efim 2023-12-21 13:44:01 +00:00
parent b10a6250b1
commit 99c2269df8
2 changed files with 51 additions and 114 deletions

View File

@ -78,7 +78,7 @@ EOEOEOEOEOE
*** yes, sounds good
** TODO after getting all new points. get coords of all fields we're working on.
** CANCELLED after getting all new points. get coords of all fields we're working on.
( there already should be no points in saturated fields )
for each such field, check if it is saturated.
@ -86,5 +86,20 @@ for each such field, check if it is saturated.
if field saturated - add the coord into set
and remove all the points
** TODO on the last step, when n is 0
** CANCELLED on the last step, when n is 0
return len(startingAt) + (all saturated fields) * (amount of elems in their phase)
** calculating points in even 7356 and odd 7321 phases
* so need to scrap things and do a more analytics approach.
no blocks on horizontal & vertical from (S)
meaning diamond expands to left & right well
* 26501365 = 202300 * 131 + 65 where 131 is the dimension of the grid
* if there is a formula A*i^2 + B*i + C = D
where i is full iteration
* for initial steps :
2023/12/21 13:25:23 after steps 65. full iter 0. got count 3701
2023/12/21 13:25:24 after steps 196. full iter 1. got count 33108
2023/12/21 13:25:27 after steps 327. full iter 2. got count 91853
2023/12/21 13:25:42 after steps 458. full iter 3. got count 179936
* https://www.dcode.fr/newton-interpolating-polynomial
14669x^2 + 14738*x+3701

View File

@ -7,15 +7,12 @@ import (
"strings"
)
func Run() (result int) {
func Run() int {
fmt.Print("hello day21")
filename := "day21/input"
field := ReadField(filename)
log.Print(field)
initialSaturatedFields := make(map[Coord]any)
log.Print(initialSaturatedFields)
// for i := 6; i <= 10; i++ {
// reachableBySteps := field.ReachableBySteps(i, map[Coord]any{
// Coord{Row: field.RowStart, Col: field.ColStart}: struct{}{},
@ -25,17 +22,28 @@ func Run() (result int) {
// field.PrintCoord(reachableBySteps, 1)
// }
steps := 26501365
reachableBySteps := field.ReachableBySteps(
steps,
map[FieldPoint]any{
FieldPoint{
InField: Coord{Row: field.RowStart, Col: field.ColStart},
}: struct{}{}},
make(map[Coord]int),
steps)
result = reachableBySteps
log.Print("reachable after steps : ", steps, result)
// initialSolutions := make(map[int]int)
// for fullIter := 0; fullIter < 4; fullIter++ {
// steps := 65 + fullIter * 131
// reachableBySteps := field.ReachableBySteps(steps, map[FieldPoint]any{
// FieldPoint{
// InField: Coord{Row: field.RowStart, Col: field.ColStart},
// }: struct{}{},
// })
// log.Printf("after steps %d. full iter %d. got count %d", steps, fullIter, len(reachableBySteps))
// initialSolutions[fullIter] = len(reachableBySteps)
// }
log.Println("will try to use the values to get coeff of Ax^2 + Bx + C = 0")
log.Println("then solve for x == 202300")
// f(x) = 14714x^2 + 14603x + 3791
// no.
// 14669x^2 + 14738*x+3701
x := 202300
result := 14669*x*x + 14738*x+3701
return result
}
@ -48,7 +56,6 @@ func Run() (result int) {
type Field struct {
RowStart, ColStart int
symbols [][]rune
SaturatedEvenCount, SaturatedOddCount int
}
type Coord struct {
@ -60,87 +67,31 @@ type FieldPoint struct {
MetaField Coord
}
func (f Field) ReachableBySteps(n int, startingAt map[FieldPoint]any, saturatedFields map[Coord]int, initialSteps int) (countReachable int) {
func (f Field) ReachableBySteps(n int, startingAt map[FieldPoint]any) map[FieldPoint]any {
if n%100 == 0 {
log.Println("going step: ", n)
}
if n == 0 {
sizeOfUnsaturated := len(startingAt)
sizeOfSaturated := 0
// log.Printf("> before adding saturated fields. central is in even %t\n", CentralFieldIsInEven(initialSteps, n))
for saturatedField := range saturatedFields {
isEven := FieldIsInEven(initialSteps, n, saturatedField)
// log.Printf("> adding saturated field %+v. it is in even %t\n", saturatedField, isEven)
if isEven {
sizeOfSaturated += f.SaturatedEvenCount
} else {
sizeOfSaturated += f.SaturatedOddCount
}
}
return sizeOfUnsaturated + sizeOfSaturated
return startingAt
}
// else collect directly available
oneStepExpanded := make(map[FieldPoint]any)
for cur := range startingAt {
for _, neighbor := range f.Neighbors(cur, saturatedFields) {
for _, neighbor := range f.Neighbors(cur) {
oneStepExpanded[neighbor] = struct{}{}
}
}
metaFields := make(map[Coord]int)
for next := range oneStepExpanded {
metaFields[next.MetaField] += 1
}
for workedUponFieldCoord, amount := range metaFields {
isEven := FieldIsInEven(initialSteps, n, workedUponFieldCoord)
if workedUponFieldCoord.Col == 0 && workedUponFieldCoord.Row == 0 {
// log.Printf("checking %+v : %d as worked fields for saturation. isEven %t", workedUponFieldCoord, amount, isEven)
}
if isEven && amount == f.SaturatedEvenCount {
log.Printf(">>> adding %+v to saturated, with amount %d\n", workedUponFieldCoord, amount)
saturatedFields[workedUponFieldCoord] = n
}
if !isEven && amount == f.SaturatedOddCount {
log.Printf(">>> adding %+v to saturated, with amount %d\n", workedUponFieldCoord, amount)
saturatedFields[workedUponFieldCoord] = n
}
}
for point := range oneStepExpanded {
saturatedAtStep, fromSaturated := saturatedFields[point.MetaField]
// hack. to not remove points from saturated fields too early
if fromSaturated && (saturatedAtStep - n > 200) {
delete(oneStepExpanded, point)
}
}
// if n < 4 {
// log.Print("reachable after steps : ", n, len(oneStepExpanded))
// f.PrintCoord(oneStepExpanded, 5)
// }
return f.ReachableBySteps(n-1, oneStepExpanded, saturatedFields, initialSteps)
return f.ReachableBySteps(n-1, oneStepExpanded)
}
func CentralFieldIsInEven(initialSteps, currentSteps int) bool {
// off by one here because on initial step we first do 'neighbors' then comparicons
return (initialSteps-currentSteps)%2 != 0
}
func FieldIsInEven(initialSteps, currentSteps int, metaCoord Coord) bool {
centralIsInEven := CentralFieldIsInEven(initialSteps, currentSteps)
fieldIsInSyncWithCentral := (metaCoord.Col+metaCoord.Row)%2 == 0
if fieldIsInSyncWithCentral {
return centralIsInEven
} else {
return !centralIsInEven
}
}
func (f Field) Neighbors(c FieldPoint, saturatedFields map[Coord]int) (resut []FieldPoint) {
func (f Field) Neighbors(c FieldPoint) (resut []FieldPoint) {
closeCoords := []FieldPoint{
{InField: Coord{Row: c.InField.Row + 1, Col: c.InField.Col}, MetaField: c.MetaField},
{InField: Coord{Row: c.InField.Row - 1, Col: c.InField.Col}, MetaField: c.MetaField},
@ -176,10 +127,11 @@ func (f Field) Neighbors(c FieldPoint, saturatedFields map[Coord]int) (resut []F
for _, close := range closeCoords {
if f.ValidCoord(close.InField.Row, close.InField.Col) {
symb := f.symbols[close.InField.Row][close.InField.Col]
_, fieldIsAlreadySaturated := saturatedFields[close.MetaField]
if (symb == '.' || symb == 'S') && !fieldIsAlreadySaturated {
if symb == '.' || symb == 'S' {
resut = append(resut, close)
}
}
}
@ -227,9 +179,6 @@ func ReadField(filename string) (result Field) {
}
}
result.symbols = rows
odd, even := result.PointsInEachPhase()
result.SaturatedEvenCount = even
result.SaturatedOddCount = odd
return
}
@ -260,30 +209,3 @@ func (f Field) PrintCoord(coords map[FieldPoint]any, expandByField int) {
return
}
// if the field is fully saturated, what is amount of 'visited' points?
// odd - meaning one step around 'S', even - meaning with standing on 'S'
func (f Field) PointsInEachPhase() (pointsIfOddPhase, pointsIfEvenPhase int) {
remainderOfEvenPhase := (f.RowStart + f.ColStart) % 2
text := "\n"
for i, row := range f.symbols {
for j, cell := range row {
if cell != '#' {
if (i+j)%2 == remainderOfEvenPhase {
pointsIfEvenPhase += 1
text += "E"
} else {
pointsIfOddPhase += 1
text += "O"
}
} else {
text += "#"
}
}
text += "\n"
}
fmt.Println(text)
log.Printf("calculating points in even and odd phases", pointsIfEvenPhase, pointsIfOddPhase)
return
}