day17, so many tries for part 1

This commit is contained in:
efim 2023-12-17 13:28:18 +00:00
parent 81b8ddc8b0
commit abca885f20
3 changed files with 100 additions and 200 deletions

View File

@ -1,48 +1,28 @@
package day17
import (
"container/heap"
"fmt"
"log"
"math"
"os"
"slices"
"strings"
// "time"
)
const ExampleResult string = ">>v>>>^>>>vv>>vv>vvv>vvv<vv>"
func Run() int {
fmt.Println("hello from day 17")
filename := "day17/example"
field := NewField(filename)
fmt.Printf("%+v\n", field)
log.Printf("%+v\n", field)
startSegment := PathSegmentEnd{
endsAt: Coord{0, 0},
totalLength: 0,
lastSteps: make(map[Direction]int),
done: true,
lastDirection: Downward, // fake, caution
}
field.RunDijkstra()
end := Coord{field.Height - 1, field.Width - 1}
// field.getNextPathsToCheck(startSegment, end)
foundMin := field.runSearch(startSegment, end)
// pathsFoundToEnd := field.Paths[end]
// fmt.Println("check visually:")
lenToEnd := field.Paths[end].totalLength
fmt.Println("check visually:")
// fmt.Println(field.Paths[end].stringPathSoFar)
// minimal := math.MaxInt
// for _, path := range pathsFoundToEnd {
// fmt.Printf("%+v ; len is %d\n", path, path.totalLength)
// if path.totalLength < minimal {
// minimal = path.totalLength
// }
// }
// fmt.Printf("i'm looking for %s\n", ExampleResult)
return foundMin
fmt.Println(field.Paths[end].stringPathSoFar)
return lenToEnd
}
// let's do dijkstra. it also needs a priority queue
@ -101,6 +81,9 @@ func (c Coord) applyDirection(d Direction) (result Coord) {
}
return
}
func (c Coord)String() string {
return fmt.Sprintf("(%d,%d)", c.Row, c.Col)
}
type Direction int
@ -142,11 +125,6 @@ type PathSegmentEnd struct {
lastDirection Direction
stringPathSoFar string
done bool
score int // lover better
}
func (p *PathSegmentEnd) IsExamplePathPrefix() bool {
return strings.HasPrefix(ExampleResult, p.stringPathSoFar)
}
func (p *PathSegmentEnd) NextDirections() (next []Direction) {
@ -158,40 +136,12 @@ func (p *PathSegmentEnd) NextDirections() (next []Direction) {
next = append(next, p.lastDirection)
}
// if p.IsExamplePathPrefix() {
// log.Printf("getting directions from %+v they are %+v", p, next)
// }
// log.Printf("getting directions from %+v they are %+v", p, next)
return
}
func (p *PathSegmentEnd) isDominating(other PathSegmentEnd) bool {
if p.endsAt != other.endsAt {
panic(fmt.Sprintf("comparing domination of paths on different ells: %+v %+v",
p, other))
}
var thisDirection Direction
var thisSteps int
for thisDirection, thisSteps = range p.lastSteps {
break
}
var otherDirection Direction
var otherSteps int
for otherDirection, otherSteps = range other.lastSteps {
break
}
sameDirection := thisDirection == otherDirection
// if other has less steps, then current total length is not important
// other can still be more efficient in the future
lessOrSameLastSteps := thisSteps <= otherSteps
return sameDirection && lessOrSameLastSteps && p.totalLength < other.totalLength
}
type Field struct {
Paths map[Coord][]*PathSegmentEnd
Paths map[Coord]*PathSegmentEnd
Costs [][]int
Height, Width int
Start Coord
@ -204,11 +154,10 @@ func NewField(filename string) Field {
totalLength: 0,
lastSteps: make(map[Direction]int),
done: true,
lastDirection: Downward, // fake, caution
score: 0,
lastDirection: Downward, // fake, need to init direct neighbors also
}
initialPaths := make(map[Coord][]*PathSegmentEnd)
initialPaths[Coord{0, 0}] = []*PathSegmentEnd{&startSegment}
initialPaths := make(map[Coord]*PathSegmentEnd)
initialPaths[Coord{0, 0}] = &startSegment
return Field{
Paths: initialPaths,
@ -224,8 +173,10 @@ func (f *Field) isValid(c Coord) bool {
}
// presupposes that direction is valid
func (f *Field) continuePathInDirection(curPath PathSegmentEnd, d Direction, finish Coord) (result PathSegmentEnd) {
nextCoord := curPath.endsAt.applyDirection(d)
func (f *Field) continuePathInDirection(curPath PathSegmentEnd, d Direction) (result PathSegmentEnd) {
// curPath := f.Paths[from]
from := curPath.endsAt
nextCoord := from.applyDirection(d)
moveCost := f.Costs[nextCoord.Row][nextCoord.Col]
newCost := curPath.totalLength + moveCost
lastSteps := make(map[Direction]int)
@ -237,100 +188,96 @@ func (f *Field) continuePathInDirection(curPath PathSegmentEnd, d Direction, fin
lastSteps[d] = curPathStepsIntoThisDirection + 1
}
newScore := newCost + (f.Height - nextCoord.Row) + (f.Width - nextCoord.Col)
return PathSegmentEnd{
endsAt: nextCoord,
totalLength: newCost,
lastDirection: d,
lastSteps: lastSteps,
stringPathSoFar: curPath.stringPathSoFar + d.AsSymbol(),
done: nextCoord == finish,
score: newScore,
}
}
func (f *Field) runSearch(startSegment PathSegmentEnd, finish Coord) int {
priorityQueue := make(PriorityQueue, 0)
heap.Init(&priorityQueue)
heap.Push(&priorityQueue, &Item{value: startSegment})
min := math.MaxInt
for len(priorityQueue) > 0 {
currentCheck := heap.Pop(&priorityQueue).(*Item).value
if currentCheck.endsAt == finish {
// log.Printf(">>>> found end %+v with len %d\n", currentCheck, currentCheck.totalLength)
if min > currentCheck.totalLength {
min = currentCheck.totalLength
log.Printf(">>>>>>>> found NEW MIN %+v with len %d\n", currentCheck, currentCheck.totalLength)
}
}
nextPaths := f.getNextPathsToCheck(currentCheck, finish)
for _, next := range nextPaths {
heap.Push(&priorityQueue, &Item{value: next})
}
}
return min
func (p *PathSegmentEnd)StringKey() string {
return fmt.Sprintf("%s from %s with len %+v", p.endsAt.String(), p.lastDirection, p.lastSteps)
}
func (f *Field) getNextPathsToCheck(curPath PathSegmentEnd, finish Coord) (furtherPathsToCheck []PathSegmentEnd) {
func (f *Field) RunDijkstra() {
checking := make([]PathSegmentEnd, 0)
distancesMap := make(map[string]int, 0)
// if len(curPath.stringPathSoFar) > f.Height+f.Width {
// if curPath.IsExamplePathPrefix() {
// log.Printf(">> CUTOFF %+v\n", curPath)
startingPath := f.Paths[f.Start]
checking = append(checking, *startingPath)
distancesMap[startingPath.StringKey()] = 0
for len(checking) > 0 {
var currentPath PathSegmentEnd
selectingMinDistanceOfVisited := math.MaxInt
for _, path := range checking {
if path.totalLength < selectingMinDistanceOfVisited {
currentPath = path
selectingMinDistanceOfVisited = path.totalLength
}
}
currentCoord := currentPath.endsAt
directions := currentPath.NextDirections()
for _, direction := range directions {
neighborCoord := currentCoord.applyDirection(direction)
if !f.isValid(neighborCoord) {
continue // prevent going off the grid
}
// log.Printf("from %+v will examine in direction %s to %+v", currentCoord, direction, neighborCoord)
// neighborPathSoFar, found := f.Paths[neighborCoord]
// if !found {
// neighborPathSoFar = &PathSegmentEnd{
// totalLength: math.MaxInt,
// }
// return
// f.Paths[neighborCoord] = neighborPathSoFar
// }
// if start is also finish : this path is done
// record the length, for the coord?
// get directions,
// if no directions : this path is done
// get neighbords,
// for each neighbor calc what whould be path if we went to the neighbor
// if neighbor already known path which DOMINATES current - do not continue
//
// in the end for each vertice there will be map[direction][]PathSegmentEnd
current := curPath.endsAt
if current == finish {
// log.Printf(">> reached end with %+v\n", curPath)
if curPath.IsExamplePathPrefix() {
log.Printf(">> reached end with %+v\n", curPath)
}
return
}
directions := curPath.NextDirections()
if len(directions) == 0 {
return
pathIfWeGoFromCurrent := f.continuePathInDirection(currentPath, direction)
distFromThatSide, isKnown := distancesMap[pathIfWeGoFromCurrent.StringKey()]
if !isKnown {
distancesMap[pathIfWeGoFromCurrent.StringKey()] = pathIfWeGoFromCurrent.totalLength
// log.Printf("not known for %s \n", pathIfWeGoFromCurrent.StringKey())
checking = append(checking, pathIfWeGoFromCurrent)
}
if pathIfWeGoFromCurrent.totalLength < distFromThatSide {
f.Paths[neighborCoord] = &pathIfWeGoFromCurrent
// log.Printf("got update for %s \n", pathIfWeGoFromCurrent.StringKey())
distancesMap[pathIfWeGoFromCurrent.StringKey()] = pathIfWeGoFromCurrent.totalLength
checking = append(checking, pathIfWeGoFromCurrent)
} else {
continue // this path is better than existing
}
}
// f.Paths[currentCoord].done = true
checking = slices.DeleteFunc(checking, func (other PathSegmentEnd) bool { return other.stringPathSoFar == currentPath.stringPathSoFar })
storedPath, found := f.Paths[currentCoord]
if !found || storedPath.totalLength > currentPath.totalLength {
f.Paths[currentCoord] = &currentPath
}
// time.Sleep(time.Microsecond)
// fmt.Print(f.printLastDirection())
// time.Sleep(time.Second)
}
}
checkingNeighbors:
for _, d := range directions {
nextCoord := curPath.endsAt.applyDirection(d)
if !f.isValid(nextCoord) {
continue
func (f *Field) printLastDirection() (result string) {
result += "\n"
for rowNum := 0; rowNum < f.Height; rowNum++ {
for colNum := 0; colNum < f.Width; colNum++ {
path, found := f.Paths[Coord{rowNum, colNum}]
if !found {
result += "."
} else {
result += path.lastDirection.AsSymbol()
}
ponentialPath := f.continuePathInDirection(curPath, d, finish)
knownPathsToNeighbor := f.Paths[ponentialPath.endsAt]
for _, knownPath := range knownPathsToNeighbor {
if knownPath.isDominating(ponentialPath) {
continue checkingNeighbors
}
// if our potential path is not dominated, then save as potential path
// and would be nice to remove all known paths which are dominated by this potential
}
filteredKnownPaths := slices.DeleteFunc(knownPathsToNeighbor, func(previous *PathSegmentEnd) bool {
return ponentialPath.isDominating(*previous)
})
filteredKnownPaths = append(filteredKnownPaths, &ponentialPath)
f.Paths[ponentialPath.endsAt] = filteredKnownPaths
furtherPathsToCheck = append(furtherPathsToCheck, ponentialPath)
// f.runSearch(ponentialPath, finish)
result += "\n"
}
return
}

View File

@ -4,3 +4,7 @@ and it's easy to imagine why.
my guess is that i really should put 'paths to explore' into priority queue
and select new ones not only by their length, but also by how far they go from the goal
* lot's of time for no result
* so, for 'dijksra' don't store set of vertices,
but of ways we've entered them

View File

@ -1,51 +0,0 @@
package day17
import (
"container/heap"
)
// An Item is something we manage in a priority queue.
type Item struct {
value PathSegmentEnd // The value of the item; arbitrary.
// The index is needed by update and is maintained by the heap.Interface methods.
index int // The index of the item in the heap.
}
// A PriorityQueue implements heap.Interface and holds Items.
type PriorityQueue []*Item
func (pq PriorityQueue) Len() int { return len(pq) }
func (pq PriorityQueue) Less(i, j int) bool {
// We want Pop to give us the lowest, so i modify snippet
return pq[i].value.score < pq[j].value.score
}
func (pq PriorityQueue) Swap(i, j int) {
pq[i], pq[j] = pq[j], pq[i]
pq[i].index = i
pq[j].index = j
}
func (pq *PriorityQueue) Push(x any) {
n := len(*pq)
item := x.(*Item)
item.index = n
*pq = append(*pq, item)
}
func (pq *PriorityQueue) Pop() any {
old := *pq
n := len(old)
item := old[n-1]
old[n-1] = nil // avoid memory leak
item.index = -1 // for safety
*pq = old[0 : n-1]
return item
}
// update modifies the priority and value of an Item in the queue.
func (pq *PriorityQueue) update(item *Item, value PathSegmentEnd) {
item.value = value
heap.Fix(pq, item.index)
}