Advent-of-Code-2023/day8/dayEight.go

155 lines
3.4 KiB
Go

package day8
import (
"fmt"
"log"
"os"
"regexp"
"slices"
"strings"
)
func Run() int {
fmt.Print("hello day 8")
filename := "day8/example3"
net, path := Read(filename)
fmt.Printf("got %+v and %+v\n", net, path)
result := GhostTraverse(net, path)
return result
}
func GhostTraverse(net Network, path Path) int {
stepsNum := 0
simultaneousPaths := make([]Node, 0)
for nodeName, node := range net.Nodes {
if strings.HasSuffix(nodeName, "A") {
simultaneousPaths = append(simultaneousPaths, node)
}
}
log.Printf("collected start points: %+v\n", simultaneousPaths)
// concurrent iteraction
for !isGhostWayDone(simultaneousPaths) {
direction := path.next()
for i, curNode := range simultaneousPaths {
simultaneousPaths[i] = getNextNode(net, curNode, direction)
}
// log.Printf("done step into %+v\n", simultaneousPaths)
stepsNum += 1
}
return stepsNum
}
func isGhostWayDone(simulaneousPath []Node) bool {
containsNonZEnding := slices.ContainsFunc(simulaneousPath, func(curNode Node) bool {
name := curNode.Name
last := name[len(name) - 1]
return last != 'Z'
})
// log.Printf("checking if done for %+v : %t", simulaneousPath, !containsNonZEnding)
return !containsNonZEnding
}
func getNextNode(net Network, curNode Node, direction rune) Node {
var nextNodeName string
switch direction {
case 'L':
nextNodeName = curNode.Left
case 'R':
nextNodeName = curNode.Right
}
nextNode, found := net.Nodes[nextNodeName]
if !found {
panic(fmt.Sprintf("instruction %s from node %+v results in not found next node %s",
string(direction), curNode, nextNodeName))
}
return nextNode
}
func TraverseNetwork(net Network, path Path) int {
stepsNum := 0
curNode := net.Nodes["AAA"]
for curNode.Name != "ZZZ" {
direction := path.next()
var nextNodeName string
switch direction {
case 'L':
nextNodeName = curNode.Left
case 'R':
nextNodeName = curNode.Right
}
nextNode, found := net.Nodes[nextNodeName]
if !found {
panic(fmt.Sprintf("at step %d instruction %s from node %+v results in not found next node %s",
stepsNum, string(direction), curNode, nextNodeName))
}
curNode = nextNode
stepsNum += 1
}
return stepsNum
}
func Read(filename string) (Network, Path) {
net := Network{
Nodes: make(map[string]Node),
}
bytes, err := os.ReadFile(filename)
if err != nil {
panic(fmt.Sprintln("error reading file ", filename))
}
lines := strings.Split(string(bytes), "\n")
path := Path{
Instruction: strings.TrimSpace(lines[0]),
}
netDescriptions := lines[2:]
re := regexp.MustCompile(`(?P<NAME>\D{3}) = \((?P<LEFT>\D{3}), (?P<RIGHT>\D{3})\)`)
nameIndex := re.SubexpIndex("NAME")
leftIndex := re.SubexpIndex("LEFT")
rightIndex := re.SubexpIndex("RIGHT")
for _, line := range netDescriptions {
if line == "" {
continue
}
match := re.FindStringSubmatch(line)
if match == nil {
panic(fmt.Sprintln("error finding match in string : ", line))
}
node := Node{
Name: match[nameIndex],
Left: match[leftIndex],
Right: match[rightIndex],
}
net.Nodes[node.Name] = node
}
return net, path
}
type Node struct {
Name string
Left, Right string
}
type Network struct {
Nodes map[string]Node
}
type Path struct {
Instruction string
curStep int
}
func (p *Path) next() rune {
curInstruction := p.Instruction[p.curStep]
p.curStep += 1
if p.curStep == len(p.Instruction) {
p.curStep = 0
}
return rune(curInstruction)
}