diff --git a/lisp-koans/koans/arrays.lisp b/lisp-koans/koans/arrays.lisp index 3b1c642..b8f8668 100644 --- a/lisp-koans/koans/arrays.lisp +++ b/lisp-koans/koans/arrays.lisp @@ -21,22 +21,22 @@ ;; AREF stands for "array reference". (setf (aref chess-board x y) (if (evenp (+ x y)) :black :white)))) (assert-true (typep chess-board 'array)) - (assert-equal ____ (aref chess-board 0 0)) - (assert-equal ____ (aref chess-board 2 3)) + (assert-equal :black (aref chess-board 0 0)) + (assert-equal :white (aref chess-board 2 3)) ;; The function ARRAY-RANK returns the number of dimensions of the array. - (assert-equal ____ (array-rank chess-board)) + (assert-equal 2 (array-rank chess-board)) ;; The function ARRAY-DIMENSIONS returns a list of the cardinality of the ;; array dimensions. - (assert-equal ____ (array-dimensions chess-board)) + (assert-equal '(8 8) (array-dimensions chess-board)) ;; ARRAY-TOTAL-SIZE returns the total number of elements in the array. - (assert-equal ____ (array-total-size chess-board)))) + (assert-equal (* 8 8) (array-total-size chess-board)))) (define-test make-your-own-array ;; Make your own array that satisfies the test. - (let ((color-cube ____)) + (let ((color-cube (make-array '(3 3 3)))) ;; You may need to modify your array after you create it. - (setf (____ color-cube ____ ____ ____) ____ - (____ color-cube ____ ____ ____) ____) + (setf (aref color-cube 0 1 2) :red + (aref color-cube 2 1 0) :white) (if (typep color-cube '(simple-array t (3 3 3))) (progn (assert-equal 3 (array-rank color-cube)) @@ -49,16 +49,16 @@ (define-test adjustable-array ;; The size of an array does not need to be constant. (let ((x (make-array '(2 2) :initial-element 5 :adjustable t))) - (assert-equal ____ (aref x 1 0)) - (assert-equal ____ (array-dimensions x)) + (assert-equal 5 (aref x 1 0)) + (assert-equal '(2 2) (array-dimensions x)) (adjust-array x '(3 4)) - (assert-equal ____ (array-dimensions x)))) + (assert-equal '(3 4) (array-dimensions x)))) (define-test make-array-from-list ;; One can create arrays with initial contents. (let ((x (make-array '(4) :initial-contents '(:one :two :three :four)))) - (assert-equal ____ (array-dimensions x)) - (assert-equal ____ (aref x 0)))) + (assert-equal '(4) (array-dimensions x)) + (assert-equal :one (aref x 0)))) (define-test row-major-index ;; Row major indexing is a way to access elements with a single integer, @@ -66,7 +66,7 @@ (let ((my-array (make-array '(2 2 2 2)))) (dotimes (i (* 2 2 2 2)) (setf (row-major-aref my-array i) i)) - (assert-equal ____ (aref my-array 0 0 0 0)) - (assert-equal ____ (aref my-array 0 0 1 0)) - (assert-equal ____ (aref my-array 0 1 0 0)) - (assert-equal ____ (aref my-array 1 1 1 1)))) + (assert-equal 0 (aref my-array 0 0 0 0)) + (assert-equal 2 (aref my-array 0 0 1 0)) + (assert-equal 4 (aref my-array 0 1 0 0)) + (assert-equal 15 (aref my-array 1 1 1 1)))) diff --git a/lisp-koans/koans/vectors.lisp b/lisp-koans/koans/vectors.lisp index 70cb0b0..2171d6e 100644 --- a/lisp-koans/koans/vectors.lisp +++ b/lisp-koans/koans/vectors.lisp @@ -19,29 +19,32 @@ (define-test vector-basics ;; #(...) is syntax sugar for defining literal vectors. (let ((vector #(1 11 111))) - (true-or-false? ____ (typep vector 'vector)) - (assert-equal ____ (aref vector 1)))) + (true-or-false? t (typep vector 'vector)) + (assert-equal 11 (aref vector 1)))) (define-test length ;; The function LENGTH works both for vectors and for lists. - (assert-equal ____ (length '(1 2 3))) - (assert-equal ____ (length #(1 2 3)))) + (assert-equal 3 (length '(1 2 3))) + (assert-equal 3 (length #(1 2 3)))) (define-test bit-vector ;; #*0011 defines a bit vector literal with four elements: 0, 0, 1 and 1. - (assert-equal #*0011 (make-array 4 :element-type 'bit :initial-contents ____)) - (true-or-false? ____ (typep #*1001 'bit-vector)) - (assert-equal ____ (aref #*1001 1))) + (assert-equal #*0011 (make-array 4 :element-type 'bit :initial-contents '(0 0 1 1 ))) + (true-or-false? t (typep #*1001 'bit-vector)) + (assert-equal 0 (aref #*1001 1))) (define-test bitwise-operations ;; Lisp defines a few bitwise operations that work on bit vectors. - (assert-equal ____ (bit-and #*1100 #*1010)) - (assert-equal ____ (bit-ior #*1100 #*1010)) - (assert-equal ____ (bit-xor #*1100 #*1010))) + (assert-equal #*1000 (bit-and #*1100 #*1010)) + (assert-equal #*1110 (bit-ior #*1100 #*1010)) ; use sly-documentation-lookup ; that's an INCLUSIVE-OR + (assert-equal #*0110 (bit-xor #*1100 #*1010))) ; that one I recognised, and EXCLUSIVE-OR +(type-of #*110011) (defun list-to-bit-vector (list) ;; Implement a function that turns a list into a bit vector. - ____) + ;; (vector :element-type 'bit :initial-contents list) ; my bad solution + (coerce list 'bit-vector) ; so, trying to take + ) (define-test list-to-bit-vector ;; You need to fill in the blank in LIST-TO-BIT-VECTOR.