koans on types and clos

- types are complicated, not sure how to look up documentation for it
would they show up in apropos all?
- list formatted types - like array vector can specify type of element,
rank / dimentions
(not sure there's variancy over the element type?)
- clos - similar to structure
for structured you get separate functions to get slots, use setf to set
generalized variables
with classes, I can use generic function to create #'make-instance
and access slots with (#'slot-value instance 'slot-name)
but there could be defined accessor, reader, writer,
and :initarg to name slot to have handle to set value in constructor

now that's a lot
This commit is contained in:
efim 2022-08-03 20:43:31 +00:00
parent c85aa1bbe5
commit b7bccb9cfb
2 changed files with 110 additions and 88 deletions

View File

@ -18,17 +18,25 @@
;; A class definition lists all the slots of every instance.
(color speed))
;; what's the difference with defstruct?
(defstruct struct-racecar
color speed)
(setq my-struct-racecar (make-struct-racecar :color :red :speed 45))
(struct-racecar-color my-struct-racecar)
;; they have generic setters and accessort, ok
(define-test defclass
;; Class instances are constructed via MAKE-INSTANCE.
(let ((car-1 (make-instance 'racecar))
(car-2 (make-instance 'racecar)))
;; Slot values can be set via SLOT-VALUE.
(setf (slot-value car-1 'color) :red)
(setf (slot-value car-1 'speed) 220)
(setf (slot-value car-2 'color) :blue)
(setf (slot-value car-2 'speed) 240)
(assert-equal ____ (slot-value car-1 'color))
(assert-equal ____ (slot-value car-2 'speed))))
;; Class instances are constructed via MAKE-INSTANCE.
(let ((car-1 (make-instance 'racecar))
(car-2 (make-instance 'racecar)))
;; Slot values can be set via SLOT-VALUE.
(setf (slot-value car-1 'color) :red)
(setf (slot-value car-1 'speed) 220)
(setf (slot-value car-2 'color) :blue)
(setf (slot-value car-2 'speed) 240)
(assert-equal :red (slot-value car-1 'color))
(assert-equal 240 (slot-value car-2 'speed))))
;; so, using #'slot-value and #'make-instance
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
@ -44,18 +52,28 @@
((color :reader color :writer (setf color))
(speed :accessor speed)))
(setq my-ship (make-instance 'spaceship))
(setf (color my-ship) :green)
(color my-ship)
;;; Specifying a reader function named COLOR is equivalent to
;;; (DEFMETHOD COLOR ((OBJECT SPACECSHIP)) ...)
;;; Specifying a writer function named (SETF COLOR) is equivalent to
;;; (DEFMETHOD (SETF COLOR) (NEW-VALUE (OBJECT SPACECSHIP)) ...)
;;; Specifying an accessor function performs both of the above.
;; I don't understand what (defmethod (setf color) ...) means
;; is that two atom name? wtf
;; nope - function-name::= {symbol | (setf symbol)}
;; http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm
;; still not quite understand it, lots of complicated things, about different forms
(define-test accessors
(let ((ship (make-instance 'spaceship)))
(setf (color ship) :orange
(speed ship) 1000)
(assert-equal ____ (color ship))
(assert-equal ____ (speed ship))))
(let ((ship (make-instance 'spaceship)))
(setf (color ship) :orange
(speed ship) 1000)
(assert-equal :orange (color ship))
(assert-equal 1000 (speed ship))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
@ -66,8 +84,10 @@
(define-test initargs
(let ((bike (make-instance 'bike :color :blue :speed 30)))
(assert-equal ____ (color bike))
(assert-equal ____ (speed bike))))
(assert-equal :blue (color bike))
(assert-equal 30 (speed bike))))
;; oh, so that's for defining initial values in the constructor
;; i guess
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

View File

@ -18,30 +18,30 @@
(define-test typep
;; TYPEP returns true if the provided object is of the provided type.
(true-or-false? ____ (typep "hello" 'string))
(true-or-false? ____ (typep "hello" 'array))
(true-or-false? ____ (typep "hello" 'list))
(true-or-false? ____ (typep "hello" '(simple-array character (5))))
(true-or-false? ____ (typep '(1 2 3) 'list))
(true-or-false? ____ (typep 99 'integer))
(true-or-false? ____ (typep nil 'NULL))
(true-or-false? ____ (typep 22/7 'ratio))
(true-or-false? ____ (typep 4.0 'float))
(true-or-false? ____ (typep #\a 'character))
(true-or-false? ____ (typep #'length 'function)))
(true-or-false? t (typep "hello" 'string))
(true-or-false? t (typep "hello" 'array))
(true-or-false? nil (typep "hello" 'list))
(true-or-false? t (typep "hello" '(simple-array character (5))))
(true-or-false? t (typep '(1 2 3) 'list))
(true-or-false? t (typep 99 'integer))
(true-or-false? t (typep nil 'NULL))
(true-or-false? t (typep 22/7 'ratio))
(true-or-false? t (typep 4.0 'float))
(true-or-false? t (typep #\a 'character))
(true-or-false? t (typep #'length 'function)))
(define-test type-of
;; TYPE-OF returns a type specifier for the object.
(assert-equal ____ (type-of '()))
(assert-equal ____ (type-of 4/6)))
(assert-equal 'NULL (type-of '()))
(assert-equal 'ratio (type-of 4/6)))
(define-test overlapping-types
;; Because Lisp types are mathematical sets, they are allowed to overlap.
(let ((thing '()))
(true-or-false? ____ (typep thing 'list))
(true-or-false? ____ (typep thing 'atom))
(true-or-false? ____ (typep thing 'null))
(true-or-false? ____ (typep thing 't))))
(true-or-false? t (typep thing 'list))
(true-or-false? t (typep thing 'atom))
(true-or-false? t (typep thing 'null))
(true-or-false? t (typep thing 't))))
(define-test fixnum-versus-bignum
;; In Lisp, integers are either fixnums or bignums. Fixnums are handled more
@ -54,20 +54,20 @@
(integer-2 most-positive-fixnum)
(integer-3 (1+ most-positive-fixnum))
(integer-4 (1- most-negative-fixnum)))
(true-or-false? ____ (typep integer-1 'fixnum))
(true-or-false? ____ (typep integer-1 'bignum))
(true-or-false? ____ (typep integer-2 'fixnum))
(true-or-false? ____ (typep integer-2 'bignum))
(true-or-false? ____ (typep integer-3 'fixnum))
(true-or-false? ____ (typep integer-3 'bignum))
(true-or-false? ____ (typep integer-4 'fixnum))
(true-or-false? ____ (typep integer-4 'bignum))
(true-or-false? t (typep integer-1 'fixnum))
(true-or-false? nil (typep integer-1 'bignum))
(true-or-false? t (typep integer-2 'fixnum))
(true-or-false? nil (typep integer-2 'bignum))
(true-or-false? nil (typep integer-3 'fixnum))
(true-or-false? t (typep integer-3 'bignum))
(true-or-false? nil (typep integer-4 'fixnum))
(true-or-false? t (typep integer-4 'bignum))
;; Regardless of whether an integer is a fixnum or a bignum, it is still
;; an integer.
(true-or-false? ____ (typep integer-1 'integer))
(true-or-false? ____ (typep integer-2 'integer))
(true-or-false? ____ (typep integer-3 'integer))
(true-or-false? ____ (typep integer-4 'integer))))
(true-or-false? t (typep integer-1 'integer))
(true-or-false? t (typep integer-2 'integer))
(true-or-false? t (typep integer-3 'integer))
(true-or-false? t (typep integer-4 'integer))))
(define-test subtypep
(assert-true (typep 1 'bit))
@ -76,10 +76,10 @@
(assert-true (typep 2 'integer))
;; The function SUBTYPEP attempts to answer whether one type specifier
;; represents a subtype of the other type specifier.
(true-or-false? ____ (subtypep 'bit 'integer))
(true-or-false? ____ (subtypep 'vector 'array))
(true-or-false? ____ (subtypep 'string 'vector))
(true-or-false? ____ (subtypep 'null 'list)))
(true-or-false? t (subtypep 'bit 'integer))
(true-or-false? t (subtypep 'vector 'array))
(true-or-false? t (subtypep 'string 'vector))
(true-or-false? t (subtypep 'null 'list)))
(define-test list-type-specifiers
;; Some type specifiers are lists; this way, they carry more information than
@ -88,64 +88,66 @@
(assert-true (typep (make-array 42) '(vector * 42)))
(assert-true (typep (make-array 42 :element-type 'bit) '(vector bit 42)))
(assert-true (typep (make-array '(4 2)) '(array * (4 2))))
(true-or-false? ____ (typep (make-array '(3 3)) '(simple-array t (3 3))))
(true-or-false? ____ (typep (make-array '(3 2 1)) '(simple-array t (1 2 3)))))
(true-or-false? t (typep (make-array '(3 3)) '(simple-array t (3 3))))
(true-or-false? nil (typep (make-array '(3 2 1)) '(simple-array t (1 2 3)))))
(define-test list-type-specifiers-hierarchy
;; Type specifiers that are lists also follow hierarchy.
(true-or-false? ____ (subtypep '(simple-array t (3 3)) '(simple-array t *)))
(true-or-false? ____ (subtypep '(vector double-float 100) '(vector * 100)))
(true-or-false? ____ (subtypep '(vector double-float 100) '(vector double-float *)))
(true-or-false? ____ (subtypep '(vector double-float 100) '(vector * *)))
(true-or-false? ____ (subtypep '(vector double-float 100) '(array * *)))
(true-or-false? ____ (subtypep '(vector double-float 100) t)))
(true-or-false? t (subtypep '(simple-array t (3 3)) '(simple-array t *)))
(true-or-false? t (subtypep '(vector double-float 100) '(vector * 100)))
(true-or-false? t (subtypep '(vector double-float 100) '(vector double-float *)))
(true-or-false? t (subtypep '(vector double-float 100) '(vector * *)))
(true-or-false? t (subtypep '(vector double-float 100) '(array * *)))
(true-or-false? t (subtypep '(vector double-float 100) t)))
(define-test type-coercion
(assert-true (typep 0 'integer))
(true-or-false? ____ (typep 0 'short-float))
(true-or-false? ____ (subtypep 'integer 'short-float))
(true-or-false? ____ (subtypep 'short-float 'integer))
(true-or-false? nil (typep 0 'short-float))
(true-or-false? nil (subtypep 'integer 'short-float))
(true-or-false? nil (subtypep 'short-float 'integer))
;; The function COERCE makes it possible to convert values between some
;; standard types.
(true-or-false? ____ (typep (coerce 0 'short-float) 'short-float)))
(true-or-false? t (typep (coerce 0 'short-float) 'short-float)))
(define-test atoms-are-anything-thats-not-a-cons
;; In Lisp, an atom is anything that is not a cons cell. The function ATOM
;; returns true if its object is an atom.
(true-or-false? ____ (atom 4))
(true-or-false? ____ (atom '(1 2 3 4)))
(true-or-false? ____ (atom '(:foo . :bar)))
(true-or-false? ____ (atom 'symbol))
(true-or-false? ____ (atom :keyword))
(true-or-false? ____ (atom #(1 2 3 4 5)))
(true-or-false? ____ (atom #\A))
(true-or-false? ____ (atom "string"))
(true-or-false? ____ (atom (make-array '(4 4)))))
(true-or-false? t (atom 4))
(true-or-false? nil (atom '(1 2 3 4)))
(true-or-false? nil (atom '(:foo . :bar)))
(true-or-false? t (atom 'symbol))
(true-or-false? t (atom :keyword))
(true-or-false? t (atom #(1 2 3 4 5)))
(true-or-false? t (atom #\A))
(true-or-false? t (atom "string"))
(true-or-false? t (atom (make-array '(4 4)))))
(define-test functionp
;; The function FUNCTIONP returns true if its arguments is a function.
(assert-true (functionp (lambda (a b c) (+ a b c))))
(true-or-false? ____ (functionp #'make-array))
(true-or-false? ____ (functionp 'make-array))
(true-or-false? ____ (functionp (lambda (x) (* x x))))
(true-or-false? ____ (functionp '(lambda (x) (* x x))))
(true-or-false? ____ (functionp '(1 2 3)))
(true-or-false? ____ (functionp t)))
;; The function FUNCTIONP returns true if its arguments is a function.
(assert-true (functionp (lambda (a b c) (+ a b c))))
(true-or-false? t (functionp #'make-array))
(true-or-false? nil (functionp 'make-array)) ; I didn't get this one, looks like that's not function
; how's that in Elisp though?
; in Elisp both #' and ' over function is a function, cool
(true-or-false? t (functionp (lambda (x) (* x x))))
(true-or-false? nil (functionp '(lambda (x) (* x x))))
(true-or-false? nil (functionp '(1 2 3)))
(true-or-false? nil (functionp t)))
(define-test other-type-predicates
;; Lisp defines multiple type predicates for standard types..
(true-or-false? ____ (numberp 999))
(true-or-false? ____ (listp '(9 9 9)))
(true-or-false? ____ (integerp 999))
(true-or-false? ____ (rationalp 9/99))
(true-or-false? ____ (floatp 9.99))
(true-or-false? ____ (stringp "nine nine nine"))
(true-or-false? ____ (characterp #\9))
(true-or-false? ____ (bit-vector-p #*01001)))
(true-or-false? t (numberp 999))
(true-or-false? t (listp '(9 9 9)))
(true-or-false? t (integerp 999))
(true-or-false? t (rationalp 9/99))
(true-or-false? t (floatp 9.99))
(true-or-false? t (stringp "nine nine nine"))
(true-or-false? t (characterp #\9))
(true-or-false? t (bit-vector-p #*01001)))
(define-test guess-that-type
;; Fill in the blank with a type specifier that satisfies the following tests.
(let ((type ____))
(let ((type '(simple-array array (5 3 *)))) ; this needs reallife context for me to get
(assert-true (subtypep type '(simple-array * (* 3 *))))
(assert-true (subtypep type '(simple-array * (5 * *))))
(assert-true (subtypep type '(simple-array array *)))